Scaffolds and integral Hopf Galois module structure on purely inseparable extensions
نویسندگان
چکیده
Let p be prime. Let L/K be a finite, totally ramified, purely inseparable extension of local fields, [L : K] = p, n ≥ 2. It is known that L/K is Hopf Galois for numerous Hopf algebras H, each of which can act on the extension in numerous ways. For a certain collection of such H we construct “Hopf Galois scaffolds” which allow us to obtain a Hopf analogue to the Normal Basis Theorem for L/K. The existence of a scaffold structure depends on the chosen action of H on L. We apply the theory of scaffolds to describe when the fractional ideals of L are free over their associated orders in H.
منابع مشابه
Hopf Galois structures on primitive purely inseparable extensions
Let L/K be a primitive purely inseparable extension of fields of characteristic p, [L : K] > p, p odd. It is well known that L/K is Hopf Galois for some Hopf algebra H, and it is suspected that L/K is Hopf Galois for numerous choices of H. We construct a family of K-Hopf algebras H for which L is an H-Galois object. For some choices of K we will exhibit an infinite number of such H. We provide ...
متن کاملFrom Galois to Hopf Galois: Theory and Practice
Hopf Galois theory expands the classical Galois theory by considering the Galois property in terms of the action of the group algebra k[G] on K/k and then replacing it by the action of a Hopf algebra. We review the case of separable extensions where the Hopf Galois property admits a group-theoretical formulation suitable for counting and classifying, and also to perform explicit computations an...
متن کاملAn action-free characterization of weak Hopf-Galois extensions
We define comodule algebras and Galois extensions for actions of bialgebroids. Using just module conditions we characterize the Frobenius extensions that are Galois as depth two and right balanced extensions. As a corollary, we obtain characterizations of certain weak and ordinary Hopf-Galois extensions without reference to action in the hypothesis. 2000 AMS Subject Classification: 13B05, 16W30
متن کاملHomotopic Hopf-Galois extensions of commutative differential graded algebras
This thesis is concerned with the definition and the study of properties of homotopic Hopf-Galois extensions in the category Ch 0 k of chain complexes over a field k, equipped with its projective model structure. Given a differential graded k-Hopf algebra H of finite type, we define a homotopic H-Hopf-Galois extension to be a morphism ' : B ! A of augmented H-comodule dg-k-algebras, where B is ...
متن کاملPseudo-galois Extensions and Hopf Algebroids
Pseudo-Galois extensions are shown to be depth two extensions. Studying its left bialgebroid, we construct an enveloping Hopf algebroid for the semi-direct product of groups or involutive Hopf algebras and their module algebras. It is a type of cofibered sum of two inclusions of the Hopf algebra into the semi-direct product and its derived right crossed product. Van Oystaeyen and Panaite observ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015